
DOI: https://doi.org/10.30837/csitic52021231818

11

COMPUTER AND INFORMATION SYSTEMS AND TECHNOLOGIES
KHARKIV, APRIL 2021

Model of Integration of Voice Assistants in the
Construction of Web Applications

Mykola Slisarenko1

Oleksii Liashenko2

1Kharkiv National University of Radio Electronics, 14 Nauky Ave,
Kharkiv UA-61166, Ukraine, mykola.slisarenko@nure.ua
2Kharkiv National University of Radio Electronics, 14 Nauky Ave,
Kharkiv UA-61166, Ukraine, oleksii.liashenko@nure.ua

Abstract. Today, voice assistants can radically change the
interaction of computer users. For many users, the ability to
read and print is impossible to access information. Voice
assistants can fill the information gap for these users.
Embedding these capabilities in today's consumer technology
would be much more cost-effective than specially designed
devices and many users would find it convenient to control
these devices.

Keywords: voice assistant, OAuth 2.0, NLU, Google actions,
intents, conversation scenes, web-hooks, REST API, JSON,
JWT.

I. INTRODUCTION AND PROBLEM STATEMENT

The complexity and accuracy of voice recognition
technology by voice assistants has increased significantly in
recent years. Currently available voice assistant products from
Apple, Amazon, and Google allow users to ask questions and
translate the answers of assistants into natural language. There
are many possible applications of this technology in the field of
web applications.

Voice Assistants are best suited for easy and clear use,
allowing users to quickly access the information they need. The
tasks performed by the voice assistant include:

 queries that can be easily answered. Actions that can be
performed using data that does not require additional
search, such as time or date. For example, creating a
reminder;

 quick but useful actions. They are usually informative
and provide benefits in a very short amount of time,
such as finding out when their order will be delivered;

 actions that do not require additional tools and are
controlled only by voice. For example, listening to
reminders for the whole day.

However, integrating voice assistants with a web
application is not an easy task. There are many cases. First,
most programs have user data to identify them. With this
approach, the assistant may require access to the user's profile
during the conversation, including the username, email address,
and profile image. The user can perform the entire stream
through the voice, which provides the ability to log in without
additional difficulty [1-7].

Secondly, it is necessary to recognize the user not only after
confirming the use of personal data, but also in the subsequent
use of the assistant. To achieve this goal, a Bearer token is
used, which provides user identification when accessing a web
application using a voice assistant. Google Sign-In, Google
Secure Authentication, and OAuth2.0 - a standard
authentication protocol, are used to link accounts. Third, if you
need to access user services (mail, calendar) you need to get
additional access from the user. This process is different from
the classic ones, because there is no interface through which we

can redirect the user to a page where he can confirm his choice.
However, the server can provide a response that will involve
the mobile device in the access procedure and only then will
the server be able to access the user's services [2-3].

Thus, we can identify the problem of implementing an
application for a voice assistant and implementing a server part
to interact with the application using technologies that will
identify users and obtain their data to provide the best user
experience.

II. PROBLEM SOLUTION AND RESULTS

When building a voice assistant application, it is important
to understand the model in which the application interacts with
the voice assistant and the assistant with the web server.
Actions in Google allow create conversational actions using the
Action SDK, Action Designer, or both. This feature allows
choosing the best workflow for any application.

The Action SDK provides a standardized file-based schema
for building your actions, a library for interacting with the
Assistant, and a CLI for deploying and managing your project.
Action Builder is built on the same technology as the Action
SDK, and allows you to create with an easy-to-use and
powerful IDE.

Conversation actions allow extending Google Assistant
with its own conversational interfaces that give users access to
web application. Actions apply a powerful natural language
understanding (NLU) mechanism to the assistant to process
and understand natural language input and implement work
based on that input. A conversational action is a simple object
that defines an entry point in conversations. During a call or
conversation, the action may trigger a web hook that notifies
the execution service to perform certain tasks [4].

Figure 1. Conversation model using web hook

Figure 1 describes the general way web hooks work for

voice assistant application:
 at specific points of action's execution, it can trigger a

web-hook that sends a request to a registered web-hook
handler (web-server) with a JSON payload.

12

COMPUTER AND INFORMATION SYSTEMS AND TECHNOLOGIES
KHARKIV, APRIL 2021

 Web-server processes the request, such as calling a
REST API to do some data lookup or validating some
data from the JSON payload. A very common way to
use fulfillment is to generate a dynamic prompt at
runtime so conversations are more tailored to the current
user;

 Web-server returns a response back to action containing
a JSON payload. It can use the data from the payload to
continue its execution and respond back to the user.

To handle any action intents has to be created. They
represent for assistant application the scenario needs exact
action to be carried out. Such as some user input that needs
processing or a system event that you need to handle. Intents
needs to be used to build invocation and conversation models.

When creating user intentions, you must specify the
following items:

 global indication of intent, which determines whether
the execution time of the assistant can correspond to the
specified user's intention during the call, as well as
during the conversation. By default, the assistant can
only meet the user's intentions during a call. Only
intentions that are marked as public are eligible for a
call from the beginning of the conversation;

 learning phrases are examples of what a user can say to
match intent. The Assistant NLU system naturally
extends these learning phrases to include other, similar
phrases. Providing a large set of high-quality examples
increases the quality of intent and accuracy of
compliance;

 parameters - is the data collected that must be obtained
from user input. To create a parameter, you need to
annotate the learning phrases in types to inform the
NLU mechanism that parts of the custom input have
been extracted. You can use system types or create your
own custom types for parameters.

When the NLU mechanism detects a match in a user's
input, it retrieves the value as a typed parameter, so you can
make logic with it in the scene. If the intent parameter has the
same name as the scene slot, the Run Time automatically fills
the scene slot with the value from the intent parameter [4-5].

When a user's response doesn't match one of intents, voice
assistant attempts to handle the input and asks user to repeat his
input. This behavior facilitates users changing actions in the
middle of a conversation. In combination with intents, scenes
are the other major building block of conversation model.
Scenes represent individual states of conversation and their
main purpose is to organize conversation into logical chunks,
execute tasks, and return prompts to users.

After building the voice assistant application there is
important part to understand how to build web-application that
can process JSON request and interact with it. After the user
authorizes action to access their Google profile, web-
application will receive a Google ID token that contains the
user's Google profile information in every subsequent request
to any action. To access the user's profile information, the next
steps should be followed:

 decoding and verification the token using JWT-
decoding library and Google's public keys;

 verification that the token's issuer (is field in the
decoded token) is https://accounts.google.com and that
the audience (aud field in the decoded token) is the

value of Client ID issued by Google to voice assistant
application;

The following is an example of a decoded token.

{
 "sub": 1234567890, // The unique ID of the user's Google

Account
 "iss": "https://accounts.google.com,
 "name": "Mykola Slisarenko",
 "given_name": "Mykola",
 "family_name": "Slisarenko",
 "email": "mykola.slisarenko@nure.ua",
 "locale": "en_US"
}

After validation the JSON it's possible to get user's

information and store it. When the creation is completed, there
should be exact response to make voice assistant application
send access token in each request to let web application
identify exact user.

{
 "token_type": "Bearer",
 "access_token": "ACCESS_TOKEN",
 "expires_in": SECONDS_TO_EXPIRATION
}

In this response "access_token" is the key which will be

sent in the following requests and by which user can be
identified [6].

III. CONCLUSIONS

During the work, the areas of voice assistants and tasks that
are best suited for their use were analyzed. The model of work
of the voice assistant and agglomeration of construction of the
application for it was described. Conversational intentions and
conversational scenes, key elements for integration, were
analyzed.

Also, tools have been proposed to achieve the goal of
identifying a user who uses a web application using a voice
assistant. JSON user data models and ways to decode this
information have been described.

As a result of the analysis, a model of voice assistant
integration when working with web applications was proposed.

REFERENCES
[1] G. Blodick, “Google Assistant: A complete guide to self-assessment”,

2018, 138 p.

[2] C. Adams, “A powerful assistant called Google: Learn to master Google
and make full use of it for your business”, 2019, 79 p.

[3] M. Alexander, “Amazon Alexa: 55 benefits of your Amazon Alexa.
Amazon Alexa vs. Google Assistant”, 2019, 48 p.

[4] M. Adams, “Google Home: Google Home Guide and Google Home
Guide with settings, features”, 2017, 117 p.

[5] T. Schillerhof, “Google Home: Guides, Settings, Features”, 2016, 56 p.

[6] H. Lee, “Voice UI Projects: Create voice-enabled applications using
Dialogflow for Google Home and Alexa Skills Kit for Amazon Echo”,
2018 , 404 p.

[7] Anbazhagan K., “IOT project using Google Assistant and other web
technologies: the best approach using web technologies with a simple
explanation”, 2019, 326 p.

