Measuring Vulnerability in Threat Modeling With Risk Matrix

Andrii Hapon¹, Volodimir Fedorchenko²

Abstract. Threat modeling is one of the most important parts when it comes to security in development of programing product. The main challenges for that are time and prioritization of the scope of work. Risk matrix is effective tool for making clear what should be done first and which consequences can be. There are few levels of consequences which are ranged by the influence on business. With help of vulnerability assessment threats can be measured by impact on confidentiality, integrity, and availability. The Common Vulnerability Scoring System is appropriate tool for catching the principal characteristics of a vulnerability and produce a numerical score reflecting its severity.

Keywords: Threat modeling; CVSS; Likelihood; Attack Vector; Metrics.

I. THREATS MODELING

Threat modeling deployed across the customer journey and user experience flows typically uses an informal, creative process that leads to "misuse" and "attacker stories" - business risks.

Threat modeling for a technical project and its data flows leads to a more mechanical approach, which leads to specific design changes and technical security measures [1].

Estimated Barriers to Threat Modeling:

- Time. Threat modeling is a time-consuming process and is the most expensive product in a software development team.
- Prioritization. Security and privacy are two aspects that developers should consider. It also needs to address issues of architectural and technical debt management, performance, operational cost optimization, service design, and bug fixing.

Fortunately, there is an elegant way to solve both problems.

Software teams manage their work through tickets (or backlog items). If the task is framed in the form of a ticket, then its implementation has become an obvious and obvious necessity. This need can then be balanced and prioritized over all other paid work.

Security work is traditionally not included in separate tickets. Rather, it remains a set of safety requirements and guides, general acceptance criteria, or, indeed, a set of vague non-functional constraints. This became a problem when teams were faced with tight deadlines and functional pressures because - although there were rules - there was no clear allocation of time.

By making threat modeling (and all other manual security actions) visible as development tickets, you can track the distribution of time. The analysis and suggested remedial actions also become tickets in and of themselves. ¹Kharkiv National University of Radio Electronics, 14 Nauky Ave, Kharkiv UA-61166, Ukraine, e-mail: gapon.andrei@gmail.com
²Kharkiv National University of Radio Electronics, 14 Nauky Ave, Kharkiv UA-61166, Ukraine, e-mail: volodymyr,fedorchenko@nure.ua

Consequently, safety is prioritized by taking a seat at the table when discussing business priorities.

Probabilities and Consequences for Business

Risk is defined as the possibility of loss, damage, or destruction something of value (information, reputation, finances, etc). Risk is expressed as multiplication of an attack likelihood on possible business impact. Risk assessment is a process of identification of risks for valuable business and functional assets and determining their severity. Results of risk assessment are business security requirements that mitigate identified business risks [2].

		Consequence		
		Minor Business Impact	Moderate Business Impact	Major Business Impact
Likelihood	Very Likely	MEDIUM	нібн	HIGH
	Likely	MEDIUM	MEDIUM	HIGH
	Possible	LOW	MEDIUM	HIGH
	Unlikely	LOW	LOW	LOW

Figure 1. Business priorities

The likelihood can be expressed as the level of motivation of the malicious user (anonymous user, authenticated user, administrator, employee, etc.) and the abilities that he possesses. Motivating a threat agent to attack company assets

Potential business consequences should be considered: impact on reputation, loss of business due to loss of customer confidence, business interruption, financial losses - cost of recovery, forensic investigation, lost income, possible fines / penalties [3].

	1
Consequence	Description
Minor	Slight loss of assets, no change
	in the way of doing business.
Moderate	Moderate changes in the way
	we do business. Serious adverse
	impact on the organization's
	operations, the assets of the
	organization, or individuals.
Major	Going out of business if
	countermeasures are not
	immediately taken. Serious or
	catastrophic adverse impact on
	the organization's operations,
	the organization's assets, or
	individuals.

II. VULNERABILITY ASSESSMENT

The impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst

outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Only the increase in access, privileges gained, or other negative outcome as a result of successful exploitation should be considered when scoring the Impact metrics of a vulnerability [4].

Table 2. Impact indicators			
Impact on confidentiality	This metric measures the		
(C)	confidentiality impact of		
	information resources		
	managed by a software		
	component due to a		
	successfully exploited		
	vulnerability.		
Impact on integrity (I)	This metric measures the		
	integrity impact of a		
	successfully exploited		
	vulnerability. Honesty refers		
	to the reliability and accuracy		
	of information.		
Impact on availability (A)	This metric measures the		
	impact on the availability of		
	an affected component as a		
	result of a successfully		
	exploited vulnerability.		

The Common Vulnerability Scoring System (CVSS) is an open schema that allows the exchange of information about vulnerabilities. Each metric is a number (score) in the range from 0 to 10, and a vector is a short textual description with values that are used to derive the score [5].

Table 3. Baseline assessment indicators

Attack vector	This metric reflects the context in which	
(AV)	a vulnerability can be exploited. This	
	metric value (and therefore the baseline	
	score) will be the greater the more	
	remote (logically and physically) an	
	attacker can be to exploit the vulnerable	
	component.	

с

Attack Difficulty (AC)	The Attack Severity metric describes the attacker-independent conditions that must exist to exploit a vulnerability. As described below, such conditions may require the collection of additional target information, the presence of certain
	system configuration parameters, or computational exceptions. "
Required	This metric describes the level of
Privileges (PR)	privilege that an attacker must have to
5 ()	successfully exploit the vulnerability. "
User interaction	This metric reflects a requirement for a
(UI)	non-attacker user to participate in the
	successful compromise of a vulnerable
	component. This metric determines
	whether a vulnerability can be exploited
	solely at the request of an attacker, or
	whether an individual user (or a process
	initiated by a user) must be involved in
	some way.
Volume (S)	The ability of a vulnerability in one
	software component to affect resources
	beyond its capabilities or privileges.

CVSS is accepted as the primary method for quantifying the severity of vulnerabilities across a wide range of organizations and companies.

REFERENCES

- [1] OWASP [Electronic resource]. https://owasp.org/wwwcommunity/Application_Threat_Modeling
- [2] Hubbard, Douglas W.; Seiersen, Richard (2016). How to Measure Anything in Cybersecurity Risk. Wiley. pp.
- [3] Science direct [Electronic resource]. https://www.sciencedirect.com/topics/engineering/consequence-category
- [4] Balbix [Electronic resource]. https://www.balbix.com/ insights/base-cvss-scores/
- [5] First [Electronic resource]. https://www.first.com