
9

COMPUTER AND INFORMATION SYSTEMS AND TECHNOLOGIES
KHARKIV, APRIL 2020

Analyzing static calls in Java byte-code
Dvinskykh David1

1,2Kharkiv National University of Radio Electronics, 14 Nauky Ave,
Kharkiv UA-61166, Ukraine, david.dvinskykh@nure.ua

Barkovska Olesia2

Abstract. The major goal of research is to analyze and
propose a new approach for static analysis of method calls in
Java code and finding the class configurations using auxiliary
libraries for reading and byte code search.

Keywords: byte-code, callgraph, challenges, java, jdk,
jgrapht, jre, static analysis.

I. INTRODUCTION AND PROBLEM STATEMENT

The software developer uses up to 90% of the time to read
the code. For checking the places of creation and configuration
in different classes, the developer manually checks each place
using the usual file search, but due to human factor, there is a
probability of missing some places [1]. To correct the situation,
a tool is needed for automatic analyzing the code for the
connection between its various parts. Many tools are free or
paid, but with little functionality or many bugs [2].

The purpose of the study is to develop an approach for
static analysis of method calls in Java and to find class
configuration places.

Existing analogs (Java-callgraph, Javadepend) and the
criteria against which they are compared are shown in Table 1.

Java-callgraph is a console application that requires the
presence of Java Virtual Machine [3].

Javadepend is part of the proprietary JArchitect software
product

Table 1. Table comparing existing software solutions
Criterias java-callgraph javadepend
Cost Free Paid
Open source Open Closed
License type 2-clause BSD

license
N/A

Profiling Exist Non-exist
Output type One Many
CI/CD Exist Non-exist
Search with criteria Non-exist Exist

II. PROBLEM SOLUTION AND RESULTS

The proposed analysis approach consists of three steps, shown
in Fig. 1.

Figure 1. General approach to analyze calls

The first component should be used to collect files that
have a class extension, then a list of all the files found is
formed and passed to the input of the second component of the

program, which will deal with the analysis and construction of
vertices of the graph and the dependencies between them.

After constructing the entire graph, the third component
begins its work, which looks all the way between the initial
group of methods and the final group of methods. If filter
criteria are specified, then in each path from start to finish, the
program tries to find the first vertex that matches the filter.

Input parameters:
 paths to the files to be analyzed;
 names of packages start and end nodes of the graph;
 package names for the filter criterion;
 output format.

Each vertex that corresponds to the filter will be printed in
the console or duplicated in a file. Each point has a name for
the class, method, and archive where it was found. Javaagent is
one of the JVM settings that allows you to specify an agent to
run before launching the application. The agent executable is a
standalone application that provides access to the byte code
manipulation mechanism (java.lang.instrument) in the runtime.

Byte code can be parsed using the Apache BCEL library,
and graphing is a third-party JGraphT library [4].

Criterion for finding paths in a graph - is the full or partial
name of packages that contain classes with target methods.

The program should take the following paths:
 the path to the JAR file;
 the path to the WAR file;
 the path to the CLASS file;
 the path to a folder that contains any type of file, namely

JAR, or WAR, or CLASS files.

III. CONCLUSIONS

Compared to other software solutions support for the filter
criterion, additional output path, more output information for
support for CI / CD processes were added.

IV. REFERENCES

[1] Morenets S. Ideal code [Electronic resource] / Sergey Morenets // dou. -
2016. - Resource access mode: https://dou.ua/lenta/articles/perfect-code/.

[2] Martovytskyi, V. O., Kolodochkyn L. L."Stvorennia kros-platformnoi
systemy zakhystu Web-servisiv i dodatkiv na osnovi XML-failiv dlia
tekhnolohii ASP. NET." Systemy ozbroiennia i viiskova tekhnika 2
(2015): 122-123.

[3] Gousios G. java-callgraph: Java Call Graph Utilities [Online resource] /
Georgios Gousios - Resource access mode:
https://github.com/gousiosg/java-callgraph/blob/master/README.md.

[4] Explore Existing Architecture - Resource Access
Mode:https://www.jarchitect.com/dependenciesview.

