

62

COMPUTER AND INFORMATION SYSTEMS AND TECHNOLOGIES
KHARKIV, APRIL 2020

Modern approaches of design software applications
based on microservise architecture

Borysenko Viktor1
1Kharkiv National University of Radio Electronics, 14 Nauky Ave,

Kharkiv UA-61166, Ukraine, viktor.borysenko@nure.ua

Borysenko Tatjana2
2Kharkiv National University of Radio Electronics, 14 Nauky Ave,

Kharkiv UA-61166, Ukraine, tetiana.borysenko@nure.ua

Abstract. The report covers modern approaches to improving
the processes of creating Enterprise applications for complex
business logic based on microservice architecture using a
domain methodology.

Keywords design, software, Enterprise applications, Domain
Driven Design, microservise architecture.

I. INTRODUCTION AND PROBLEM STATEMENT

Microservices architecture has a positive impact on

principles for a microservice architecture (MSA). Here are the
four goals to consider in Microservice Architecture approach
[1-2]. Reduce Cost: MSA will reduce the overall cost of
designing, implementing, and maintaining IT services.

Increase Release Speed: MSA will increase the speed from
idea to deployment of services.

Improve Resilience: MSA will improve the resilience of
our service network.

Enable Visibility: MSA support for better visibility on
your service and network.

At the same time microservice architecture follow basic
principles:

 Scalability;
 Availability;
 Resiliency;
 Flexibility;
 Independent, autonomous;
 Decentralized governance
 -Failure isolation;
 -Auto-Provisioning;
 -Continuous delivery through DevOps/

Business logic implements business rules is the base part
of the enterprise applications. The development of an
application with complex business logic is a complicated and
time-consuming process.

At the same time, designing and implementation of
complex business logic for applications are based on
microservice architecture is harder than for monolithic
applications. The main reason is the requirement to split the
whole logic effectively between different microservices.

The typical domain model looks like a spiderweb of
interrelated classes. To build complex software applications
based on the microservice architecture it is required to solve
two essential problems.

The first problem is that hierarchy of classes in
microservice architecture should be split by services, unlike
monolithic architecture. Therefore, first of all, it is necessary
to get rid of the objects' references that cross boundaries of
services.

The second problem lies in the design of the business logic
that is restricted by the usage of transactions in a microservice
architecture.

II. PROBLEM SOLUTION AND RESULTS

The current work uses the modern methodology of
domain-driven design (DDD) as a fundamental approach for
developing enterprise applications [3]. This approach includes
firstly usage of strategic and secondarily tactic design patterns.

Basic concepts of domain-driven design using strategic
templates [4]:

 Single language;
 Limited context;
 Subject domain,
 Subject subdomain;
 Semantic core;
 Context map.

Strategic design patterns are used in different modern
enterprise applications as building blocks. Some of them are
supported by such frameworks as JPA and Spring. To achieve
strategic development is enough to use such tools.

I in this
work that is one of tactical design patterns used in DDD
methodology. It structures the business logic as a set of
aggregates. These building blocks are very useful during
development of microservices.

The domain model describes a set of classes and the
relationship between them in traditional object-oriented
design. Classes are usually grouped into packages. The
boundaries between different business objects are not clear in
the traditional domain model. Such ambiguous vague
separation may cause problems, especially in microservice
architecture.

The lack of clear boundaries also causes problems when
updating a business object in addition to conceptual
uncertainty. A typical business object has invariants, i.e.
special business rules that must always be followed. But for
observance of invariants it is necessary to carefully design
business logic.

Changing or updating parts of a business object directly
Aggre as

tactical pattern of DDD methodology helps to solve this
problem effectively.

In this case, the aggregate is the cluster of domain objects
that can be used as unified whole. It consists of a root entity,
as well as one or more entities and objects. Many business
objects are designed as aggregates. For example, "Gas

are aggregates.

63

COMPUTER AND INFORMATION SYSTEMS AND TECHNOLOGIES
KHARKIV, APRIL 2020

 in the
form of a set of aggregates, i.e. graphs of objects that can be
used as a unified whole. Structuring the domain model as a set
of aggregates defines clear boundaries.

Aggregates break down the domain model into blocks and
 individually. They also determine the

scope of operations, such as updating, fetching, and deleting.
The aggregate is often loaded from the entire database, it

allows to avoids any problems with lazy loading.
When an aggregate is deleted from the database all its

objects are deleted too.
Updating the whole aggregate, and not its individual parts,

solves problems with consistency as described in the previous
example. Update operations are called for the root of the
aggregate, which ensures the observance of invariants.

In addition, in order to maintain competitiveness, the
aggregate root is blocked by version number or database
isolation level. However, it should be mentioned that this
approach does not require updating the entire aggregate in the
database.

Another rule that aggregates must obey is that a transaction
can only create or update one aggregate. This limitation is
ideal for microservice architecture. It ensures that the
transaction does not overstep the limits of the service. It also
agrees well with the limited transnational model of most
NoSQL databases.

It is important to decide how big it is necessary to make
this or that aggregate during developing a domain model. On
the one hand, ideally, aggregates should be small.

This will increase the number of simultaneous requests that
your application is able ot handle and improve scalability as
each aggregate's updates are serialized.

This will also have a positive effect on the experience of
interaction, as it reduces the probability that two users will try
to make conflicting changes to the same aggregate.

But on the other hand, an aggregate is the scope of a
transaction, therefore, in order to ensure the atomicity of a
certain update, on the contrary it is worth making it larger.

The negative aspect of large aggregates in the context of
microservice architecture is that they prevent decomposition.
For example, the business logic for orders and customers
should be in the same service, which makes this service more
volumetric. Considering these problems it is better to make
aggregates as small as possible.

The main part of the business logic consists of aggregates
in a standard microservice. The rest of the code belongs to
domain services and narratives.

Narratives orchestrate local transaction chains to ensure
data consistency.

Services serve as entry points of business logic and are
called by inbound adapters.

The service uses the repository to retrieve aggregates or
save them to the database.

Each repository is implemented by an outgoing adapter
that accesses the database.

In the context of DDD, a domain event is something that
happened with an aggregate.

In a domain model it is a class. An event usually represents
a state change. In this work, it is recommended to use the

te - the aggregate publishes a domain

event at the time of its creation or during some other
significant change.

The usefulness of domain events relates to the fact that
other parts of the interaction (users, external applications, or
other components within the same application) are often
interested in information about changes in the state of the
aggregate.

A domain event is a class with a name based on the passive
participle of the past tense. It contains properties that
expressively describe this event. Each property is either a
simple value or an object.

A domain event usually has metadata, such as its identifier
and timestamp. It may carry the identifier of the user who
made the change, as far as it is useful for audit. Metadata can
be part of an event object - possibly defined in the parent
class. Or they can be inside the wrapper around the event
object. The identifier of the aggregate that generates the event
may also not be its direct property, but it can be part of the
wrapper.

But the disadvantage of requesting an aggregate from a
service is the additional costs of fulfilling this request.
Alternatively, you can use event enrichment.

It means that events contain the information that a
consumer needs. As a result, event consumers become simpler
because they no longer need to request data from the service
that posted the event. Event enrichment simplifies consumers,
but the drawback of such approach is the risk of violation of
open/closed SOLID principle for event classes.

These classes can potentially be changed each time when

support of event as such kind of changes can affect several
parts of the application.

Earlier, the main reasons why aggregates are suitable for
developing business logic in a microservice architecture were
presented.

When an aggregate is created or updated it must publish
domain events. These events have many implementation
areas. Subscribers of domain events notify users and other
applications, as well as publish messages in a client browser
via WebSocket.

III. CONCLUSIONS

A good way to organize the business logic of a
microservice is to split it into aggregates according to the
DDD principle. Aggregates make the domain model more
modular, exclude the possibility of using object references
between services and ensure that each ACID transaction is
performed within the same service.

REFERENCES
[1] Irakli Nadareishvili, Matt McLarty, Michael Amundsen/ Microservice

Architecture: Aligning Principles, Practices, and Culture/- O'Reilly,
2016.-144

[2] Kasun Indrasiri, Prabath Siriwardena. Microservices for the Enterprise.-
Apress, 2018.- 434 p.

[3] Vijay Nair. Practical Domain-Driven Design in Enterprise Java - Using
Jakarta EE, Eclipse MicroProfile, Spring Boot, and the Axon
Framework.-Apress, 2019.- 388

[4] Chris Richardson. Microservices Patterns: With examples in Java.
Manning Publications: 2018.- 522Felipe Gutierrez. Introducing Spring
 Framework.-Apress:2014.-352

