
DOI: https://doi.org/10.30837/csitic52021231864

34

COMPUTER AND INFORMATION SYSTEMS AND TECHNOLOGIES
KHARKIV, APRIL 2021

Securing Bearer token in OAuth2.0
Oleksandr Sievierinov1 1Kharkiv National University of Radio Electronics, 14 Nauky Ave,

Kharkiv UA-61166, Ukraine,
e-mail: oleksandr.sievierinov@nure.ua

Oleh Kholosha2
2Kharkiv National University of Radio Electronics, 14 Nauky Ave,

Kharkiv UA-61166, Ukraine,
e-mail: oleh.kholosha@nure.ua

Short abstract. This article provides information about the
bearer token in Oauth2.0. Considered the threats to which the
bearer token is exposed in Oauth, suggested recommendations
for the safe use of this type of token.

Keywords: Oauth, registration, authorization, security, token,
bearer token.

I. INTRODUCTION AND PROBLEM STATEMENT

Today, when humanity actively uses the Internet, every
person is registered on various sites and resources. Registration
is required to use any web-service and users are faced with the
issue about safe storing credentials [1].

OAuth 2.0 is an authorization protocol that allows one
service to grant user access rights to another service. The
protocol allows not to store the login and password on the
application server and gives the user limited set of rights [2, 3].

II. PROBLEM SOLUTION AND RESULTS

Bearer token is defined by OAuth protocol as one of the
form of credentials, which can be used by any party, regardless
of who that party is. A Bearer token is a random sequence that
an authentication server provides to all users. When the user
logs on to the application, the authentication server generates
the token. A user that uses bearer token does not need to prove
his identity. The bearer token is the most used type of token in
OAuth.

The bearer token has the same characteristics as session
cookies. If an attacker hijacks an access token, the attacker
accesses all features related to the token. The OAuth bearer
token is exposed to the following threats:

1. Token forgery. The attacker creates a token or changes
the real one, which allows him to access the information. For
example, the availability of administrator data.

2. Reusing token. The attacker uses a token that is out of
use. In this case, the resource server returns an error rather than
real data.

3. Token redirection. The attacker uses a token created for
use on a single resource server to access another server, which
identifies the token as authentic to it.

4. Decryption of tokens. The token contains confidential
information about the system. Due to decryption, the attacker
receives important data about the system.

It is necessary to ensure that access tokens, which are
treated as bearer tokens, are secured. The peculiarity of OAuth
protocol is that access tokens are protected by end-to-end
privacy – SSL/TLS. This security system is a protocol that
provides a secure Internet connection [4].

The user token must include a minimum amount of rights.
For example, if all users request information about the resource
owner profile, only the profile scope should be provided. These
minimal capabilities, which are limited for the user, allow

protecting information. It is recommended to store access
tokens in temporary memory to reduce the risks of certain
attacks. If the attacker gets access to the database, he will no
longer receive information about access tokens[5].

The authorization server should store access token hashes,
not token text. Then, if a database with all access parameters is
stolen, the information will not be able to be used. It is
recommended to store passwords with hash salting. At the
same time, it is better to reduce the validity of access tokens to
minimize the risk of data leakage from one access token.
Therefore, if an attacker reveals the contents of a token, the
short life of the latter makes it useless. If long access to the
resource is required, a refresh token on the authorization server
should be issued by the client.

The resource server must be designed to limit token scope,
respecting the “minimal privilege” principle. The resource
server must validate all tokens. Although it is recommended to
cache the status of the token, it must also assess the
disadvantages and benefits of stored token data. Rate limiting
and other API protections techniques help protect information
from an attacker [6].

III. CONCLUSIONS

Bearer tokens greatly simplify the operation of OAuth
protocol for authorization. They allow to easily and correctly
implement the protocol. However, this ease of use requires
some token protection.

1. Security of access tokens should be provided by safe
transportation tools, for example, TLS.

2. The requested information must be minimal.
3. The authorization server must store token hashes, not

its text.
4. An authorization server should reduce the lifetime of

the access token to minimize the risks of misuse of
information.

5. The resource server must place access tokens in
temporary (i.e. transient) memory [7].

REFERENCES
[1] Richard Smit, Authentication methods, // Authentication: From

Passwords to Public Keys. 2008. C. 190 – 210

[2] RFC 6749, The OAuth 2.0 Authorization Framework [Електронний
ресурс]: Режим дoступу: https://tools.ietf.org/html/rfc6749

[3] Власов, А.В., О.В. Сєвєрінов, and О.В. Слиш. Впровадження
децентралізованої системи ідентифікації. НТУ «ХПІ», 2020.

[4] Justin Richer Antonio Sanso, OAuth 2 in Action, March 2017
Publisher(s): Manning Publications, ISBN: 9781617293276

[5] Нігель Чепмен, Сlassification of methods of authorization and
authentication, // Authentication and Authorization on the Web. 2012. С.
140-153

[6] Ертем Османоглу, Identity management in the modern world, //
Identity and Access Management: Business Performance. 2013. С. 97

[7] OAuth protocol specification [Електронний ресурс]: Режим дoступу:
https://oauth.net/2/

